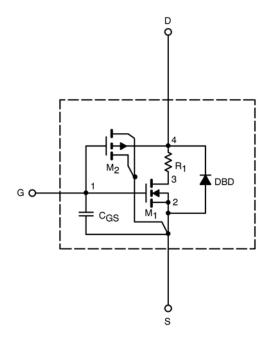


SPICE Device Model Si7894DP Vishay Siliconix

N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

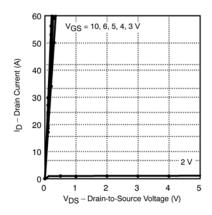
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

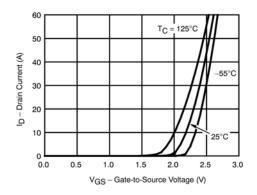
Document Number: 70706 www.vishay.com 30-May-04 1

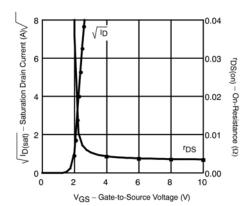
SPICE Device Model Si7894DP

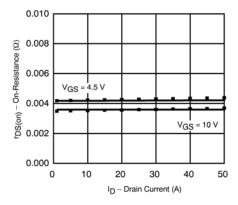
Vishay Siliconix

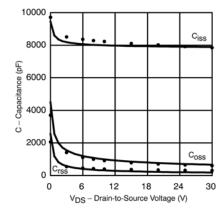
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = 250 μA	1.3		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \geq 5 \ V, \ V_{GS}$ = 10 V	1365		Α
Drain-Source On-State Resistance ^a	r	V_{GS} = 10 V, I_D = 25 A	0.0036	0.0037	Ω
	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 19 \text{ A}$	0.0042	0.0042	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15 \text{ V}, I_D = 25 \text{ A}$	103	110	S
Diode Forward Voltage ^a	V_{SD}	$I_S = 2.9 \text{ A}, V_{GS} = 0 \text{ V}$	0.76	0.70	V
Dynamic ^b					
Total Gate Charge	Q_g	V _{DS} = 15 V, V _{GS} = 4.5 V, I _D = 25 A	60	48	nC
Gate-Source Charge	Q_{gs}		17	17	
Gate-Drain Charge	Q_{gd}		10	10	
Turn-On Delay Time	$t_{d(on)}$	$V_{DD} = 15 \text{ V}, \text{ R}_L = 15 \Omega$ $I_D \cong 1 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_G = 6 \Omega$ $I_F = 2.9 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	25	22	Ns
Rise Time	t _r		32	15	
Turn-Off Delay Time	$t_{\text{d(off)}}$		42	190	
Fall Time	t _f		91	45	
Source-Drain Reverse Recovery Time	t _{rr}		55	50	

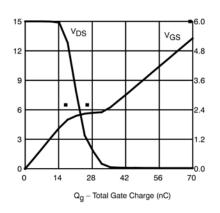

www.vishay.com Document Number: 70706


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si7894DP Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.